Short Communication

Maternal care in *Gargaphia decoris* (Heteroptera, Tingidae), with comments on this behavior within the genus and family

Marcus Guidoti a,*, Douglas W. Tallamy b, Alberto Luiz Marsaro Júnior c

a Programa de Pós-graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
b Department of Entomology and Wildlife Ecology, College of Agriculture and Natural Resources, University of Delaware, Newark, United States
c Embrapa Trigo, Passo Fundo, RS, Brazil

A R T I C L E   I N F O

Article history:
Received 21 August 2014
Accepted 9 February 2015
Available online 9 April 2015
Associate Editor: Kleber Del Claro

Keywords:
Gargaphia
Neotropical
Parental care
*Solanum concinnum*

A B S T R A C T

Maternal care in *Gargaphia decoris* is described for the first time. A video is presented as supplementary material. The knowledge on such trait within Tingidae is summarized. The behavior within the family is discussed, and the potential as a source of phylogenetic characters for further analyses is stressed.

© 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. All rights reserved.

Maternal care in Tingidae was first reported for *Gargaphia tiliae* (Walsh, 1864) (Weiss, 1919) and since then just a few additional species have been observed with this rare behavior. Besides *G. tiliae*, there are records of maternal care for six other species distributed in three other genera, two from the New World and one from Africa. Within *Gargaphia* Stål, *G. solani* Heidemann, 1914, *G. iridescentis* Champion, 1897 and *G. decoris* Drake, 1931 also present this trait (Fink, 1915; Torre-Bueno, 1942; Ockers, 2000). Other taxa exhibiting maternal care are *Corythucha bulbosa* Osborn and Drake, 1916 (Sheeley and Yonke, 1977), *C. hewitti* Drake, 1919 (Faeth, 1989) and *Leptobyrsa decorata* Drake, 1922 (Melksham, 1984) in the New World and *Compseuta picta* Schouteden, 1923 (Tallamy and Iglay, 2004) in Africa. A complete list of references treating this subject in Tingidae is provided (Table 1). There are several differences in how maternal care is expressed among these taxa. Egg-dumping, egg-guarding, colonial oviposition, and aggressive defense against predators have all been reported in various combinations within Tingidae.

*Leptobyrsa decorata* is a Neotropical species, which presents colonial oviposition and egg-guarding. Females remain with immatures until the fourth instar (Melksham, 1984). Loeb and Bell (2006) suggested that cooperation between females with the task of egg-guarding is controlled by chemical cues and not physical cohesion among partners. Melksham (1984) showed differences in the number of egg batches and adult guards between two different populations of this lace bug. This may be correlated with unequal predation pressure. Still, according to Melksham (1984), wing-fanning was observed in this species but the context of this behavior was not defined. Within the genus *Corythucha*, maternal care has been observed in two species (Sheeley and Yonke, 1977; Faeth, 1989), but this behavior apparently is absent in several others (Tallamy and Denno, 1981b; Faeth, 1989) observed egg-guarding in *C. hewitti*, but not aggressive brood protection. Females seem to communicate with their young through chemicals dispersed from abdominal movements. This communication may regulate nymphal aggregation, offering protection from the dilution effect of predation or it may be a mechanism to guide nymphal movements (Faeth, 1989). In addition to egg-guarding, wing-fanning was observed in *Corythucha bulbosa* against a spider (Sheeley and Yonke, 1977). *Compseuta picta*, the first tingid outside the New World in which maternal care has been recognized, presented egg-guarding and wing-fanning every time an inanimate aggressor approached its eggs or nymphs (Tallamy and Iglay, 2004). The experiments with these females were interrupted due to time constraints, but females remained with and defended their offspring throughout the two days of observation (Tallamy and Iglay, 2004).

Two alternative reproductive strategies have been observed in the *Gargaphia* species cited above: egg-dumping and egg-guarding. Although these strategies have been better studied in *G. solani* and *G. tiliae*, *G. iridescentis* also exhibits these behaviors (Torre-Bueno, 1935; Tallamy, 2005). Egg dumping is analogous to the avian
behavior of certain taxa which regularly or occasionally lay eggs in
the nests of conspecifics (Tallamy, 2005). Maternal Gargarphia are
not the only invertebrates to exhibit conspecific egg-dumping, this
behavior also has been recognized in subsocial bees and wasps (e.g.,
Brockmann, 1993) and treehoppers (Eberhard, 1986; Zink, 2003).

Once physiologically committed to egg-guarding, a female protects
eggs and nymphs under her care by offensively moving toward the
predator while wing-fanning, sometimes even climbing on the top
of the predator (Tallamy and Denno, 1981a). Egg-dumpers, in con-
trast, abandon their eggs to the care of egg-guarders and go off to
produce more eggs elsewhere. In this way egg-dumpers can pro-
cede more than twice as many eggs as egg-guarders in their lifetime
(Tallamy and Horton, 1990; Tallamy, 2005). Egg-guarders suspend
further egg production until their first clutch reaches adulthood
and independence (Tallamy and Denno, 1982).

Rather than being victims of egg-dumpers, egg-guarders benefit
from receiving dummer eggs because they are typically laid around
the perimeter of the guardian’s egg mass, providing a buffer against
incoming predators. This buffer dilutes losses of the guarding
female’s eggs and nymphs (Tallamy and Horton, 1990). When-
ever possible, females dump their eggs instead of caring for their
brood, since the egg-dumping strategy yields more eggs and avoids
the hazards associated with predator encounters (Monaco et al.,
1998). When a suitable egg mass is not available for would be
egg-dumpers, gravid females lay and care for their own eggs. The
egg-guarding/egg-dumping alternatives are controlled by juvenile
hormone (JH); high levels of JH promote egg-dumping behavior
and low levels trigger egg-guarding (Tallamy et al., 2002). The
relationship between maternal alternatives and JH in Gargarphia
lacebugs is consistent with other demonstrated roles of JH in
parental care, vitellogenesis, and oviposition (e.g., Martinez and
Huerta, 1997; Rankin and Riddiford, 1977). The complex behav-
ioral interactions between egg-dumpers and egg-guarders have
been extensively studied in G. solani in which trade-offs, proximate
regulation, chemical mediation, egg-mass recognition and related-
ness were explored (Tallamy and Denno, 1981a, 1982; Tallamy and
Tallamy, 1993; Monaco et al., 1998; Loeb et al., 2000; Parr et al.,
2002).

In July 2013, females of Gargarphia decoris presenting egg-
guarding behavior were observed (Fig. 1). We found this species in
the municipality of Passo Fundo, Rio Grande do Sul, Brazil (28° 13’S,
52° 24’W), on the abaxial surface of leaves of Solanum concinnum
(Solanaceae). Vouchers were deposited in the Museu de Ciências
Naturais da Fundação Zoobotânica do Rio Grande do Sul (MCNZ),
in Porto Alegre, Rio Grande do Sul. Four leaves, three containing
a guard female with eggs, and one containing a female with eggs
hatching to first instar nymphs, were collected for preliminary lab-
oratory tests. Under a stereomicroscope, we disturbed the female
with a needle, touching her sides and advancing toward the egg
batch in front of her. These tests were filmed, and a video is avail-
able as supplementary material (Guidoti et al., 2015). The wing-fanning
behavior was observed only for the female guarding both eggs and
nymphs. When disturbed on the side of the body, the female just
moved a little, returning to the guard position right after the needle
was withdrawn. When disturbed by frontal movements in direction
of the egg batch, the female moved aggressively toward the needle.
The female fanned her wings only after she charged the needle. Fur-
ther studies were not possible due a cold wave that substantially
reduced the populations of this lace bug. Ockers (2000) reported
but did not describe maternal care for G. decoris; our description
now provides details that suggest maternal care in G. decoris is
similar to that described in other species of Gargarphia thus far.

More experiments are needed to fully characterize the behavior
in G. decoris.

Gargarphia, as it is currently defined, is a New World genus com-
prising about 70 species, but it lacks a phylogenetic hypothesis
designed specifically to test its monophyly. Recently, G. arizonic
Drake and Carvalho, 1944, G. tiliae and G. solani were included in
a molecular phylogenetic analysis, supporting the monophyly of
the genus (Guilbert et al., 2014). However, an unpublished thesis
suggests Gargarphia should be divided into several distinct gen-
era (Smith, 1996). Although the aforementioned Gargarphia species
exhibit maternal care with the exception of G. arizonica (Hardin and
Tallamy, 1992), these four species are both morphologically and
behaviorally similar, and therefore we suggest that maternal care
could be a defining trait of a single subsection of Gargarphia. Thus,
the behavior could be included as character for future phylogenetic
analyses of this group.

The fact that different expressions of maternal care have
been observed in Tingidae enhances the evolutionary questions
regarding this trait in the family. Even though we expect that
maternal care has evolved in more Tingidae species than is currently
recognized (Tallamy and Iglay, 2004), it has still only been observed
in a few species, indicating that Tingidae systematics could benefit
from additional data on the presence or absence of brood protection
across the family. Not only would genus-level systematics improve
from the availability of such data, but additional behavioral descrip-
tions would enable the testing of hypotheses about the evolution

Table 1
List of references on maternal care behavior in Tingidae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crespidea picta</td>
<td>Tallamy and Iglay (2004)</td>
</tr>
<tr>
<td>Corythucha bulbosa</td>
<td>Sheeley and Yonke (1977)</td>
</tr>
<tr>
<td>Corythucha hewitti</td>
<td>Faeth (1989)</td>
</tr>
<tr>
<td>Gargarphia decoris</td>
<td>Ockers (2000)</td>
</tr>
<tr>
<td>Gargarphia iridescens</td>
<td>Tallamy (2005)</td>
</tr>
<tr>
<td>Gargarphia solani</td>
<td>Fink (1915)</td>
</tr>
<tr>
<td></td>
<td>Kears and Yamamoto (1981)</td>
</tr>
<tr>
<td></td>
<td>Tallamy and Denno (1981a)</td>
</tr>
<tr>
<td></td>
<td>Tallamy and Denno (1981b)</td>
</tr>
<tr>
<td></td>
<td>Tallamy (1986)</td>
</tr>
<tr>
<td></td>
<td>Hardin and Tallamy (1992)</td>
</tr>
<tr>
<td></td>
<td>Tallamy and Tallamy (1993)</td>
</tr>
<tr>
<td></td>
<td>Monaco et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>Loeb et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>Tallamy et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Parr et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Loeb (2003)</td>
</tr>
<tr>
<td>Gargarphia tiliae</td>
<td>Weiss (1919)</td>
</tr>
<tr>
<td></td>
<td>Torre-Bueno (1935)</td>
</tr>
<tr>
<td></td>
<td>Hardin and Tallamy (1992)</td>
</tr>
<tr>
<td></td>
<td>Melksham (1984)</td>
</tr>
<tr>
<td></td>
<td>Loeb and Bell (2006)</td>
</tr>
<tr>
<td>Leptolyssra decora</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Gargarphia decoris Drake, 1931 female guarding an egg batch with first instar
nymphs. Scale bar: 1 mm. Photo: Marsaro Júnior, A.L.
of maternal care in Tingidae. Therefore, more attention should be given to this behavior in other Tingidae. We urge that such data should not be neglected and the presence or the absence of such trait should always be reported.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

We thank Aline Barcellos, Carolina Adami and Filipe Michels for their comments on the first version of this manuscript. To Dennis Kopp, Eric Guilbert Joe Eger, Randall Schuh and Thomas Henry, for their encouragements in publish this data. CNPq (Brazil) for the Master’s Degree fellowship supporting the first author.

Appendix A. Supplementary data

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.rbe.2015.03.004.

References


