Systematics, Morphology and Biogeography

‘Species' from two different butterfly genera combined into one: description of a new genus of Euptychiina (Nymphalidae: Satyrinae) with unusually variable wing pattern

André Victor Lucci Freitas a,*, Eduardo Proença Barbosa a, Keith Richard Willmott b, Niklas Wahlberg c, d, Gerardo Lamas e

a Department of Animal Biology, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
b McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, United States
c Laboratory of Genetics, Department of Biology, University of Turku, Turku, Finland
d Department of Biology, Lund University, Lund, Sweden
e Department of Entomology, Museu de Historia Natural, Universidade Nacional Mayor de San Marcos, Lima, Peru

A R T I C L E I N F O
Article history:
Received 8 May 2015
Accepted 12 January 2016
Available online 4 March 2016
Associate Editor: Héctor Vargas

Keywords:
Harjesia
Integrative taxonomy
Pseudodebis
Satyrini
Yphthimoides

A B S T R A C T

Sepona Freitas and Barbosa, gen. nov. is proposed for the Neotropical satyrine butterfly species Eup- tychia punctata Weymer, 1911 and its junior subjective synonyms Euphytchia griseola Weymer, 1911 and Taygetis indecisae Ribeiro, 1931. The new genus has a distinctive wing pattern and shape of the valvae in the male genitalia, the latter being a unique autapomorphy within the subtribe Euptychiina. Based on molecular data, this genus is not sister to any other single euptychiine genus, instead appearing as the sister to all remaining genera in the Taygetis clade. The present paper illustrates the complexity of the taxonomy of Euptychiina, and the importance of using different sources of evidence in taxonomic studies.

© 2016 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In recent years, the highly diverse butterfly subfamily Satyrinae has been subject to several studies attempting to clarify its internal relationships and taxonomy (Murray and Proowell, 2005; Peña et al., 2006, 2010; Marín et al., 2011; Matos-Maravi et al., 2013; Siewert et al., 2013; Seraphim et al., 2014). These studies have revealed many non-monophyletic genera, and a number of complexes of cryptic species waiting to be disentangled, especially in the predominantly lowland, largely Neotropical subtribe Euptychiina (e.g. Peña et al., 2010; Freitas et al., 2012a,b; Matos-Maravi et al., 2013; Zacca et al., 2013; Siewert et al., 2013; Seraphim et al., 2014).

Including 10 genera, the “Taygetis clade” is one of five major groups of Euptychiina (Peña et al., 2010); a preliminary phylogeny for this clade (Matos-Maravi et al., 2013) showed that four genera, namely Harjesia Forster, 1964, Pseudodebis Forster, 1964, Forsterinaria R. Gray, 1973 and Taygetis Hübner [1819], are polyphyletic, requiring some revised generic combinations and the description of new genera. The genus Harjesia, as then conceived, included species placed in three different clades within the “Taygetis clade” (Matos-Maravi et al., 2013). In that phylogeny, Harjesia griseola (Weymer, 1911) appeared as sister to the entire “Taygetis clade” (Matos-Maravi et al., 2013), suggesting that it should be placed in a new genus.

Ongoing research into the phylogenetic relationships of another euptychiine genus, Yphthimoides Forster, 1964, showed that this genus is clearly polyphyletic, with several species that should be reassigned to other genera (Freitas et al., 2012b, Barbosa et al., 2015, EPB and AVLF, in prep.). One species in particular, Yphthimoides punctata (Weymer, 1911), is quite distinct from all other described Yphthimoides, and further morphological studies revealed that Y. punctata and H. griseola are similar enough to be considered subjective synonyms.

This study presents evidence based on an integrative taxonomic approach (e.g., Dayrat, 2005; Yeates et al., 2011; Pante et al., 2015) using both morphological and molecular data for the synonymy of Y. punctata and H. griseola, and describes a new genus to harbor the resulting single species.

* Corresponding author.
E-mails: baku@unicamp.br (A.V.L. Freitas), niklas.wahlberg@biol.lu.se (N. Wahlberg).

http://dx.doi.org/10.1016/j.rbe.2016.01.004
0085-5626/© 2016 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Material and methods

Adult specimens were studied in a number of American and European collections, and the following acronyms are used here: AWLW – Allan & Lesley Wolhuter collection, United Kingdom; DZUP – Departamento de Zoologia, Universidade Federal do Pará; CURITIBA, Paraná, Brazil; FLMN – Florida Museum of Natural History, Gainesville, FL, USA; KJPH – Keith R. Willmott & Jason P. W. Hall collection, Gainesville, FL, USA; LBCB – L. & C. Brévignon collection, French Guiana; MNHN – Muséum National d’Histoire Naturelle, Paris, France; MNRJ – Museu Nacional do Rio de Janeiro, Rio de Janeiro, Brazil; MOBE – Mohamed Bennesbah collection, France; MUSM – Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru; MZUJ – Museu Zoologiczne Uniwersytetu Jagiellońskiego, Kraków, Poland; NHMUK – The Natural History Museum, London, United Kingdom; YUGA – Yuvalinka Gareca collection, Santa Cruz, Bolivia; ZSM – Zoologische Staatssammlung München, München, Germany; ZUEC – Museu de Zoologia da Universidade Estadual de Campinas, Campinas, São Paulo, Brazil; ZUEC-AVLF – André V. L. Freitas Collection, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.

Morphology

Dissections were made using standard techniques. Legs, palpi, and abdomens were soaked in hot 10% potassium hydroxide for nearly 10 minutes before dissection, and dissected parts were stored in glycerol. In order to see the venation, wings were diaphanized by soaking them in alcohol and NaClO solution (bleach). Taxonomic nomenclature follows Lamas (2004a,b), modified by Peña et al. (2006) and Wahlberg et al. (2009). Drawings and measurements of wings, legs, and palpi were made using a Leica® MZ7.5 stereomicroscope equipped with a micrometric scale and a drawing tube. Photographs of the male and female genitalia were taken using a Zeiss Discovery V20 Stereomicroscope. The following abbreviations are used: (FW) forewing, (HW) hind wing, (D) dorsal, (V) ventral.

Phylogenetic inference

Genomic DNA was extracted from two legs of adults by using the DNeasy Blood & Tissue Kit protocol (QIAGEN, Düsseldorf, Germany). DNA was stored in TE buffer at −20 °C. The mitochondrial gene cytochrome c oxidase I (COX1, ca. 658 bp, corresponding to the ‘DNA barcode’ region) for all specimens and the nuclear genes GAPDH for one specimen (YPH-0240) and Rp55 for the outgroups were amplified, purified and sequenced using standard techniques (see Silva-Brandão et al., 2005; Wahlberg and Wheat, 2008). The sequences of nuclear gene Rp55 for Harjesia griseola were obtained from GenBank.

All the sequences were aligned by eye with sequences obtained previously and available on GenBank by using BioEdit v. 7.2.4 (Hall, 2013, available at http://www.mbio.ncsu.edu/bioedit/bioedit.html#downloads). The final matrix comprised 32 specimens from species of 10 genera (including 11 specimens from the new genus Sepona) and three species used as outgroups, namely Hermeuptychia maimoune (A. Butler, 1870), Paryphythmoidea grimon (Godart [1824]) and Splenideuptychia doxes (Godart [1824]) (see Table 1 for the sequence codes).

The phylogenetic relationships of the new species were estimated using maximum likelihood. Analyses were run using RAxML (Stamatakis et al., 2008) with 1000 rapid bootstrap replicates and a search for the maximum likelihood topology on the CIPRES portal (Miller et al., 2010). The data were modeled according to the GTR + G model for each partition independently.

Table 1

<table>
<thead>
<tr>
<th>Species name</th>
<th>Code</th>
<th>Locality</th>
<th>COI</th>
<th>GAPDH</th>
<th>Rp55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepona punctata</td>
<td>YPH-0240</td>
<td>Abunã, Porto Velho, RO, Brazil</td>
<td>KR349480</td>
<td>KR349476</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0346</td>
<td>Est. Ecco Alto Acre, Assis Brasil, AC, Brazil</td>
<td>KR349481</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0494</td>
<td>Concção do Mato Dentro, MG, Brazil</td>
<td>KR349482</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0502</td>
<td>Est. Ecco Alto Acre, Assis Brasil, AC, Brazil</td>
<td>KR349483</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0503</td>
<td>Reserva Trabjú, Pindamonhangaba, SP, Brazil</td>
<td>KR349484</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0506</td>
<td>Bonito, MS, Brazil</td>
<td>KR349485</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0507</td>
<td>Bonito, MS, Brazil</td>
<td>KR349486</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>YPH-0511</td>
<td>Porto Velho, RO, Brazil</td>
<td>KR349487</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>CP23-21</td>
<td>Provincia La Convención, Peru</td>
<td>JQ392607</td>
<td>JQ392838</td>
<td>JQ392943</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>CP24-01</td>
<td>Madre de Dios, Peru</td>
<td>JQ392608</td>
<td>–</td>
<td>JQ392944</td>
</tr>
<tr>
<td>Sepona punctata</td>
<td>CP24-02</td>
<td>Madre de Dios, Peru</td>
<td>JQ392609</td>
<td>–</td>
<td>JQ392945</td>
</tr>
<tr>
<td>Hermeuptychia maimoune</td>
<td>YPH-0239</td>
<td>Rio Madeira, Porto Velho, RO, Brazil</td>
<td>KR349479</td>
<td>KR349475</td>
<td>KR349472</td>
</tr>
<tr>
<td>Paryphythmoidea grimon</td>
<td>YPH-0095</td>
<td>Três Lagos, MS, Brazil</td>
<td>KR349477</td>
<td>KR349473</td>
<td>KR349471</td>
</tr>
<tr>
<td>Splenideuptychia doxes</td>
<td>YPH-0172</td>
<td>Serra do Japi, Jundiaí, SP, Brazil</td>
<td>KR349478</td>
<td>KR349474</td>
<td>–</td>
</tr>
<tr>
<td>Tagetina orbea</td>
<td>CP-02-13</td>
<td>Tambopata Research Center, Madre de Dios, Peru</td>
<td>JQ392613</td>
<td>JQ392842</td>
<td>JQ392949</td>
</tr>
<tr>
<td>Tagetina orbea</td>
<td>CP-C1107</td>
<td>CICRA, Peru</td>
<td>GU205839</td>
<td>GU205952</td>
<td>GU206011</td>
</tr>
<tr>
<td>Tagetina banghaesi</td>
<td>LEP00435</td>
<td>Filo de Chumbiaria, Zamora-Chinchipe, Ecuador</td>
<td>JQ392633</td>
<td>JQ392854</td>
<td>JQ392964</td>
</tr>
<tr>
<td>Tagetis wewernyi</td>
<td>PM03-03</td>
<td>Magistral, Sinaloa, Mexico</td>
<td>JQ392708</td>
<td>JQ392918</td>
<td>JQ393027</td>
</tr>
<tr>
<td>Tagetis larus</td>
<td>PM14-24</td>
<td>–</td>
<td>JQ392609</td>
<td>JQ392885</td>
<td>JQ392995</td>
</tr>
<tr>
<td>Tagetis virgilia</td>
<td>PM02-03</td>
<td>Amalfi, Porcè, Antioquia, Colombia</td>
<td>JQ392700</td>
<td>JQ392912</td>
<td>JQ393021</td>
</tr>
<tr>
<td>Tagetis laches</td>
<td>PM04-13</td>
<td>Xingu, PA, Brazil</td>
<td>JQ392659</td>
<td>JQ392878</td>
<td>JQ392988</td>
</tr>
<tr>
<td>Forsterinaia quantis</td>
<td>PM10-05</td>
<td>Pu. E. Serra do Rola Moça, Nova Lima, MG, Brazil</td>
<td>JQ392596</td>
<td>JQ392829</td>
<td>JQ392343</td>
</tr>
<tr>
<td>Paratygetis lineata</td>
<td>NN58</td>
<td>Puente Puntayacu - Qbda, La Solitaria, Junin, Peru</td>
<td>JQ392618</td>
<td>JQ392846</td>
<td>JQ392953</td>
</tr>
<tr>
<td>Paratygetis abinotata</td>
<td>CP-07-43</td>
<td>Chanchamayo, Junín, Peru</td>
<td>JQ392616</td>
<td>JQ392844</td>
<td>JQ392951</td>
</tr>
<tr>
<td>Posttagetis penelae</td>
<td>CP-01-06</td>
<td>Tambopata Research Center, Madre de Dios, Peru</td>
<td>JQ392620</td>
<td>–</td>
<td>JQ392955</td>
</tr>
<tr>
<td>Posttagetis penelae</td>
<td>UN0403</td>
<td>Teodoro Sampaio, SP, Brazil</td>
<td>JQ392623</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pseudodebis valentina</td>
<td>CP-01-85</td>
<td>Tambopata Research Center, Madre de Dios, Peru</td>
<td>JQ392629</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pseudodebis valentina</td>
<td>CP-C125</td>
<td>CICRA, Peru</td>
<td>JQ392631</td>
<td>JQ392852</td>
<td>JQ392962</td>
</tr>
<tr>
<td>Harjesia blanda</td>
<td>CP-01-13</td>
<td>Tambopata Research Center, Madre de Dios, Peru</td>
<td>JQ3338800</td>
<td>JQ357436</td>
<td>JQ357565</td>
</tr>
<tr>
<td>Harjesia blanda</td>
<td>CP-C157</td>
<td>CICRA, Peru</td>
<td>JQ392606</td>
<td>JQ392837</td>
<td>JQ392942</td>
</tr>
<tr>
<td>Harjesia obscura</td>
<td>CP23-22</td>
<td>Peru</td>
<td>JQ392610</td>
<td>JQ392839</td>
<td>JQ392946</td>
</tr>
<tr>
<td>Harjesia obscura</td>
<td>PM01-20</td>
<td>Paramarita, MT, Brazil</td>
<td>JQ392612</td>
<td>JQ392841</td>
<td>JQ392948</td>
</tr>
</tbody>
</table>
Sepona Freitas & Barbosa, gen. nov.

Type species: *Euptychia punctata* Weymer, 1911, here designated.

Diagnosis

Molecular data (Peña et al. 2010) place this genus within the "Taygetis clade" of the satyrine subtribe Euptychina. In terms of wing shape and pattern, adults are similar to those of some species of Harjesia, Pseudodebis and Taygetina Forster, 1964, which all have undulate rather than straight dark discal and postdiscal lines on the ventral surface, but this genus can be distinguished from all other euptychines by the unique shape of the valve in the male genitalia (Fig. 3A). The valve bears a long, thin, inwardly curved projection arising abruptly from the otherwise rounded main body of the valve. See Table 2 for comparisons of additional morphological characters of *Sepona punctata* with representatives of other genera of the "Taygetis clade". The relationships of *Sepona* to other euptychina genera, and justification for its recognition as a monotypic genus, are addressed further below under ‘Discussion’.

Etymology

Sepona is an arbitrary combination of letters, derived from the Latin transitive verb "sepono", meaning to put aside, separate, or remove, in reference to the isolated position of the genus in comparison with other members of the "Taygetis clade". It should be treated as a feminine noun.

Sepona punctata (Weymer, 1911) **comb. nov.**

Euptychia punctata Weymer, 20 April 1911: 205. **Type Locality**: Brazil, Minas Gerais. **Syntype(s)**, not located.

Redescription

Male (Figs. 1, 2A-C-D-E. 4A-B-D). Eyes reddish brown, covered with sparse black hairs. Palpus 1.5 times as long as head, brown with light brown hairs (Fig. 2C). Antenna of males 9.0–10.0 mm in length with 36 antennomeres, extending to mid-costa; shaft rust-brown dorsally, orange brown ventrally, sparsely scaled dorsally; club not conspicuously developed, including eleven segments, with apical portion (last five segments) dark brown. Forewing length 23–25 mm (n = 6); hindwing length 19–20 mm (n = 6). HW outer margin slightly undulate. Male wing venation shown in Fig. 2A. Wings with dorsal ground color pink with few markings, restricted to a suffused dark brown outer margin on DFW, and to dark double marginal line, and a submarginal line following contours of marginal line on DFW. Ventral wings light brown; VFW crossed by two thin zigzag dark brown lines, extending from costa to 2A, first line one-third distance from wing base to...
apex; second line extending from costa to 2A at two-thirds distance from wing base to apex; a conspicuous lighter outer band is adjacent to second line, followed by a darker occellar region (see next); a thin dark brown zigzag submarginal line with single black dots in vertices and a brown regular marginal line extending from costa to 2A; four dark ocelli in spaces R5–M1 (ocellus 1), M1–M2 (2), M2–M3 (3) and M3–CuA1 (4). VHW crossed by two thin dark brown lines from costa to anal margin, in similar position to those on forewing; a conspicuous lighter outer band is adjacent to second line, followed by a darker occellar region (see next); a dark brown zigzag submarginal line with single black dots in vertices and a brown regular marginal line extending from costa to 2A; a series of five dark ocelli can be found in cells R5–M1 (ocellus 1), M1–M2 (2), M2–M3 (3), M3–CuA1 (4) and CuA1–CuA2 (5). Details about ocelli size and shape discussed further below. No conspicuous androconial scales observed.

Male genitalia (Fig. 3A–E). Saccus elongate; tegumen rounded and short; gnathos long and pointed, projecting upwards above uncus; uncus elongated, with lateral expansions in dorsal view, giving an arrowhead appearance; valvae elongated, ending in a bump with a long thin pointed process; aedeagus curved; cornuti absent; juxta sclerotized, linking both valvae together.

Female (Fig. 2B, F, 4C–E–F). Forewing length 24–26 mm (n = 2); hindwing length 20–22 mm (n = 2). Antenna 11.0 mm in length, with 35 antennomeres, extending to mid-costas. General color and pattern very similar to those of males. Female genitalia as in Fig. 3E, F. Ductus bursae partially sclerotized, corpus bursae rounded; a pair of conspicuous signa present.

Taxonomy and variation

Weymer (1911) described Euptychia punctata based on an unstated number of specimens from Minas Gerais, Brazil. Several pages later, he described Euptychia griseola based also on an unstated number of specimens from Mapiri, Bolivia. Later, Ribeiro (1931) described a third taxon as Taygetis indecisa, based on one female from Brazil, Rio Jamari; this taxon was promptly synonymized with Euptychia griseola by May (1933). Descriptions of both E. punctata and E. griseola were also based on female specimens, and although this cannot be determined unambiguously from their original descriptions, the fact that the types are females in both cases suggests that males were unknown to the authors. No type specimen(s) of punctata has been found, but there is a single female in ZSM identified by Forster (1964) as the “Typus” of griseola, and we accept that it indeed represents a syntype (which we designate herein as lectotype), since this particular specimen (examined) matches precisely the illustration provided subsequently by Weymer (1911: pl. 47f, fig. [7]). The female holotype (examined) of Taygetis indecisa Ribeiro is deposited in MNJB. Although appearing rather different in wing pattern, the names punctata and griseola apparently represent extremes of geographical variation within a single species. Variation on the dorsal wing surfaces is practically absent and obvious seasonal variations have not been detected. The ventral surface of both wings, however, shows much variation, especially in the number and size of the ocelli. Most individuals from central and southeastern Brazil and eastern Bolivia (“punctata” phenotype) have the ocelli reduced to small black dots, sometimes with a tiny white pupa on the VHW; they also present a more homogeneous ventral pattern (Fig. 4E, F). Conversely, individuals from western Amazonia and Guianas (the “griseola” phenotype) have more developed ocelli circled by yellowish cream scales and with a white pupa on both wings, and a conspicuous banded pattern on the ventral wings (Fig. 4A, B). Intermediate phenotypes between “punctata” and “griseola” are known from Acre and Rondônia in Brazil, and from Bolivia, and are usually more similar to the “griseola” phenotype (Fig. 4C, D). To our knowledge, no two of these three phenotypes (“punctata”, “griseola” and intermediate) have been recorded in sympathy. The two names were published several months apart, and we thus treat E. griseola as a junior subjective synonym of S. punctata n. syn.

Fig. 2. Morphological characters of Sepion punctata. A, male wing venation – forewing above and hind wing below; B, female wing venation – forewing above and hind wing below; C, male palpus; D, male foreleg; E, male midleg; F female foreleg.

Fig. 3. Male and female genitalia of Sepona punctata. A, male genitalia in lateral view; B, male genitalia in dorsal view; C, male genitalia in ventral view; D, male aedeagus (lateral view); E, female genitalia in ventral view; F, female genitalia: detail of the signa in corpus bursae. (sa) saccus, (te) tegumen, (un) uncus, (va) valva, (bu) corpus bursae, (st) sternum.

Other records: French Guiana. – Cayenne, Roura, Cacao [4°35′N,52′28″W] (Damico, R.), Feb 1996, 1 ♀ (LBCB) (Brévignon, 2008: 68, pl. 7, fig. 81, 82); Saint-Laurent-du-Maroni, Saül [3°37′N,53′12″W], 9 Oct 2011, 1 ♀ (MOBE) (Brévignon & Bennemahb, 2012: 46, pl. 3, fig. 11 [adult wings]. 11a [male genitalia]).

Biology and distribution

Sepona punctata is known from eastern Ecuador to southeastern Brazil (Espírito Santo, Rio de Janeiro, Minas Gerais and São Paulo). There are also records from two sites in French Guiana (Brévignon, 2008; Brévignon and Bennemahb, 2012) (Fig. 6). In eastern Ecuador the species is extremely rare, and the few known localities are in the Andean foothills on the types of sandstone soils that frequently support stands of bamboo. Adults are usually scarce and rare in collections, although they were sometimes common in areas with large bamboo patches in the upper Juruá River, in Acre, Brazil (AVLF and K.S. Brown Jr., pers. obs.). The species is usually associated with forested habitats, but some populations in SE Brazil (the “punctata” phenotype) are known from riparian forests in the cerrado. The immature stages and hostplants are unknown.

Discussion

The position of Sepona punctata as a well-supported sister to the remaining genera in the “Taegis clade”, and the polyphyletic
nature of Harjesia as illustrated by Matos-Maravi et al. (2013) and in the present paper (Fig. 5), clearly shows that this species is not part of Harjesia (which has as its type species Taygetis blanda Möschler, 1877). The reasons for erecting a new genus for this taxon are therefore clear: unless all species in the “Taygetis clade” are lumped into a single genus, an undesirable option given the morphological variation and taxonomic diversity within the clade, there is no way to circumscribe monophyletic genera in the clade without making this taxon a monobasic genus. In addition to its phylogenetic position, the male genitalia of S. punctata is quite distinct from all known species of Harjesia (Forster, 1964 and unpublished results of the authors), presenting several unique characters, including the extremely thin and curved aedeagus and the unique shape of the valvae (see Fig. 3A and Table 2).

The known wing patterns of S. punctata are highly variable, but although specimens from western Amazonia and Guianas are quite

Fig. 4. Variation in wing pattern of Sepona punctata (all from Brazil). A, Abunã, Rio Madeira, Rondônia; B, Porto Velho, Rondônia; C, Estação Ecológica do Alto Acre, Acre; D, Porto Acre, PAD Humaitá, Acre; E, Concepção do Mato dentro, Minas Gerais; F, Parque Municipal do Trabijú, Pindamonhangaba, São Paulo (A, B, D – males; C, E, F – females).

Fig. 5. Relationships among Sepona punctata and selected species in the “Taygetis clade” and several outgroups inferred with maximum likelihood. Numbers near branch nodes are bootstrap branch support. Names in parentheses for Sepona punctata refer to the phenotype of the voucher specimens (see text).
divergent from those from southeastern Brazil, individuals with intermediate wing pattern are known from eastern Bolivia, and Acre and Rondônia, Brazil. In addition, these differences are not related to seasonal forms and, based on the few known individuals, there is low variation within populations, including in the sites where intermediate populations are known. These reasons were considered sufficient to not recognize subspecific taxa within this species.

The above-described variation in wing patterns throughout the distribution of S. punctata easily explains why this taxon was described as three different species, twice by the same author (Weymer, 1911), in three different genera (see the synonymy list above). This situation is a perfect example of how complex is the taxonomy of Euptychina, where most of the large genera are non-monophyletic, with species spread in two or more different clades (as is the case of Splendeuptychia Forster, 1964, Cissia Doubleday, 1848, and Paryphthimoides Forster, 1964, see Peña et al., 2010).

Hopefully, forthcoming studies combining morphological and molecular data will help to disentangle the complex and species-rich clade which constitutes the subtribe Euptychina, providing a well resolved phylogeny that will serve as a framework for future studies focusing on diversification patterns of Neotropical butterflies.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

We would like to thank Keith S. Brown Jr., Blanca Huertas, Marcio Uehara-Prado, Lee D. Miller, Jacqueline Y. Miller, Debra Murray, Jason Hall, Axel Hausmann, Carla Penz, Gláucia Marconato, Yuvinka Gareca and Andreas Segerer for their help in diverse phases of the manuscript. We also thank Poliana F. Araujo and Augusto H. B. Rosa for providing fresh specimens, Luiza M. Magaldi for helping with the DNA extraction and Tamara M. C. Aguiar for helping spread the specimens. Lee D. Miller and Jacqueline Y. Miller gave great inspiration to the first author to work on Satyrinae systematics. EPB acknowledges FAPESP (2012/03750-8) for a graduate fellowship. AVLF acknowledges support from FAPESP (Biota-Fapesp – grants 2011/50225-3, 2012/50260-6, 2013/50297-0), from the Brazilian Research Council – CNPq (fellowship 302585/2011-7). This publication is part of the RedElP ‘Rede Nacional de Pesquisa e Conservação de de Lepidópteros’ SISBIOTA-Brasil/CNPq (563332/2010–7), of the project “Identificação Molecular de Biodiversidade de Invertebrados Terrestres” (grant 564954/2010-1) included in the “Rede Nacional de Identificação Molecular da Biodiversidade—BR-BoL” (MCT/CNPq/FNDCT 50/2010), the collaborative grant “Dimensions US-Biota-São Paulo: Assembly and evolution of the Amazon biota and its environment: an integrated approach”, US NSF, NASA, and FAPESP (2012/50260–6), and from the National Science Foundation (DEB–1256742).

References

