The genus *Oxysarcodexia* Townsend, 1917 is confined to the Americas, with a cumulative range extending from southern part of the U.S.A. to Argentina, but three species have been recorded from Canada (Ontario, Quebec) and at least two species have been introduced into the Australasian Region (Pape, 1996). This genus comprises about 90 small to medium-sized species (6–12 mm) and is one of the largest Neotropical genera of Sarcophagidae (Pape and Dahlem, 2010). The monophyly of *Oxysarcodexia* has been supported by molecular (Stampfer et al., 2013; Piwczynski et al., 2014) and morphological (Giroux et al., 2010) phylogenetic analyses, and a distinctive autapomorphy is the presence of a lateral triangular projection of the phallic tube distal to the base of vesica (Figs. 6, 10) (Giroux et al., 2010).

Some species of *Oxysarcodexia* have been collected in cities and suburban areas (Lopes, 1973; Dias et al., 1984; Mulieri et al., 2011; Yepes-Gaurias et al., 2013) and may be anthropophilic. Adults of this genus are the most common flies in traps baited with dung or carrion in Brazil (Sousa et al., 2011, 2015), as these substrates are utilized by the adult females as larviposition sites (Lopes, 1973), making some species of *Oxysarcodexia* important for forensic science (Carvalho and Mello-Patui, 2008). Adult specimens of this genus are also collected in butterfly traps baited with fermented fruits (Lopes, 1975a). Little is known of the biology of immatures of this genus, but some species has been bred from carrion and dung of mammals and birds (Lopes, 1973; Pape and Dahlem, 2010).

The genus *Oxysarcodexia* is expected to contain a high number of undescribed species (Mara Souza, unpubl.), and we are here describing one new species from Maranhão, northern Brazil.

Material and methods

Specimens were obtained with a “fly trap” as described by Almeida et al. (2003, pp. 26 and 27), which are baited with rotting beef lung.

The male terminalia was dissected by detachting the abdomen from the body and clearing it in cold 10% KOH at room temperature for one day, followed by neutralization in acetic acid, dehydration in alcohol and washing in distilled water. Dissected terminalia was stored in glycerin in microvials pinned beneath the source specimens.

A LEO 1450VP scanning electron microscope at the *Museu Paraense Emilio Goeldi* was used to generate images of a male sternite 5 mounted on an aluminum stub and sputter-coated with a gold-palladium alloy.

Terminology of external morphology follows Cumming and Wood (2009) and that of the male terminalia follows Giroux et al. (2010).
Figs. 1–6. Oxysarcodexia cocais sp. nov., male terminalia of holotype. (1) Epandrium, surstylus and cercus, left lateral view; (2) Right pregonite and postgonite, lateral view; (3) Cerci, dorsal view; (4) Sternite 5, ventral view; (5) Phallus, ventral view; (6) Phallus with an arrow pointing to the triangular projection, lateral view. Scale bars = 3 mm. (Abbreviations: ar, arm; bs, base; cl, cleft; j, juxta; ls, lateral stylus; ms, median stylus; prg, pregonite; ptg, postgonite; ve, vesica.)

Label data of type specimen are presented in verbatim quotation following the method proposed by O’Hara (1982): with a backslash (\) to indicate a line break and quotes (“”) to indicate the beginning and end of a label. Data from non-type specimen labels were transcribed in the following sequence: country (uppercase), state, province or department (italics), municipality or city; date of collection; collection method; collector’s name; and, in parenthesis, the number and sex of specimens and acronym for the institution where the specimens are deposited.

All the specimens were deposited in the entomological collection of the Museu Paraense Emílio Goeldi (MPEG), Belém, state of Pará, Brazil.

Results

Oxysarcodexia cocais sp. nov. (Figs. 1–6)
Oxysarcodexia sp1: Sousa et al., 2015: 6.

Description. Male. Body length = 6.7 mm. Head: Fronto-orbital and parafacial plates with golden pruinosity; post-ocular plates with silvery gray pruinosity; frontal vitta black, with row of 6 subequal frontal setae; front about 0.1x head width at level of ocellar triangle; inner vertical seta well-developed; outer vertical seta not differentiated; ocellar seta similar to uppermost frontals; reclinate
fronto-orbital seta longer than frontals and proclinate absent; gena and postgena with golden pruinosity and black setae; antenna dark brown, first flagellomere with pale golden pruinosity and about 2x as long as pedicel, arista plumose on basal third; palpus black.

Thorax: Dark brown with gray pruinosity; chaetotaxy: acrosticals 0 + 1, dorsocentrals 2 + 4 (first two shorter), intra-alars 2 + 2, supra-alars 2 + 3, postalars 2, postpronotals 3, notopleurals 4 (2 long primaries and 2 short subprimaries intercalated), katepisternals 3 (middle one short, inserted slightly below anterior one), postalar wall setose, scutellum with one preapical, no apical, two long laterals; prosternum setose in almost full extension.

Wings: Hyaline, tegula black, R1 bare, Rs+M setulose in proximal half, costal spine not differentiated.

Legs: Blackish brown, fore femur with rows of setae along dorsal, posterodorsal and posteroventral surfaces. All the other legs are missing.

Abdomen: Blackish with gray pruinosity; tergite 3 with one marginal lateral seta; tergite 4 with one pair of median marginals and 2 lateral marginal setae; sternites blackish, sternites 2 and 3 subsquare-shaped; sternite 4 trapezoid, with posterior concave margin, sternites 2 to 4 covered with long and slender setae and without differentiated marginal setae.

Terminalia: Sternite 5 with short base (wider than long) and widened arms without a lateral projection, inner lateral margin of arm distally covered with many scattered fine setae and with spine-like setae, with U-shaped cleft (Fig. 4).

Cercus, in lateral view, elongated and narrowing toward apex (Fig. 1). Dorsal margin of cercus at midlength with a depression followed by a grainy elevation (Fig. 1). Cerci, in dorsal view, with prongs divergent and apex rounded (Fig. 3). Cercal prong, in dorsal view, without setae or setulae (Fig. 3). Surstylus elongated, as long as distiphallus, with serrate apex (Fig. 1). Pregonite shorter than postgonite, deeply sinusous on ventral margin, distal third perpendicular to basal third (Fig. 2). Postgonite elongated, curved, with two short spine-like setae on ventral margin, and a rounded apex (Fig. 2). Phallus well sclerotized, with no division between basal and distiphallus, and juxta widened in lateral view (Fig. 6). Ventral margin of distiphallus bearing many hair-like setulae (Figs. 5, 6). Phallus, in ventral view, with margin composed by plates covered with hair-like setulae and spines (Fig. 5). Lateral styli tubular (Fig. 5). Median styli tubular and shorter than lateral styli (Fig. 5). Vesica, in lateral view, slightly angled, with a pre-apical pointed projection ventrally and many tiny pointed projections dorsally (Fig. 6).

Female. Unknown.

Discussion. *Oxysarcodexia cocais* sp. nov. differs from congeners in having surstylus very long and almost the same length as the cercus (Fig. 1). All described species of *Oxysarcodexia* have a triangular or oblong surstylus (Fig. 9), shorter than cercus. The shape of sternite 5 is very different as well. Most species of *Oxysarcodexia* have a sternite 5 with base (basal portion that ends in the cleft) usually longer than wide, a deep median cleft with almost parallel inner edges and arms narrowed and rounded apically with
a small projection laterally and base (basal portion that ends in the cleft) usually longer than wide, as shown in Oxsarcedoxia thornax (Walker, 1849) (Fig. 7). However, there are nine species (Oxsarcedoxia aura (Hall, 1937); Oxsarcedoxia cyanea Lopes, 1975; Oxsarcedoxia edwardsi Lopes, 1946; Oxsarcedoxia galeata (Aldrich, 1916); Oxsarcedoxia liliarum Souza & Buenaventura, 2016; Oxsarcedoxia terminalis (Wiedemann, 1830); Oxsarcedoxia varia (Walker, 1836); Oxsarcedoxia xon (Dodge, 1968); and Oxsarcedoxia zayasi Dodge, 1956) whose sternite 5 has a V-shaped cleft, arms broadened without the lateral projection, with a base wider than long (Fig. 8). The sternite 5 of O. cocias sp. nov. (Fig. 4) resembles that of these species in having the arm broadened and without a lateral projection, but the cleft is U-shaped rather than V-shaped.

Biology. The holotype was collected in a type of palm tree forest known locally as “mata de cocaís”, which occurs sporadically both in the rainforest and in the cerrado (savanna-like vegetation) in the state of Maranhão, northeastern Brazil. This type of forest is characterized mainly by the babassu palm (Orbignya phalerata).

Distribution. NEOTROPICAL – Brazil (Maranhão).

Etymology. The specific epithet refers to “mata de cocaís”, the predominant vegetation in the type locality. The specific epithet should be treated as a noun in apposition.

Material examined. Holotype male labeled as follows: “Brasil, MA [Maranhão]. Poção de Pedras/Pastagem-mata de cocaís [pasture-palm forest]/SO4 43°4°18’0/W 04°55°0508’/[J.R.P. Sousa [collector]]; “Aramadilha p. moscas [fly trap]/com pulmão bovino [bovine lung][/Aramadilha 26 [trap 26]/Área 06 [site 06]]. Specimen without mid, hind legs and with detached terminalia cleared and stored in a plastic microvial with glycerin pinned under the specimen.

Oxsarcedoxia aduncia Lopes, 1975

(Figs. 9–10)

Material examined. BRAZIL. Pará: Belém, Parque Ambiental de Belém, 03.V.2011, S.L.X.L. Camargo [collector], armadilha para moscas com pulmão bovino [fly trap with bovine lung] [1 male, MPEG]; ibidem, 23.IV.2016, botão floral de [flower bud of] Cassia, F.S. Carvalho-Filho [collector] [1 male, MPEG].

Comments. The terminalia of studied specimens is quite different from that pictured in the original description by Lopes (1975). In the examined specimens, the shape of the distal part of the vesica (spiny membranous part represented in light gray in Fig. 10) have a concavity creating the two pointy edges (Fig. 10), while these expansions are not so developed in the illustration by Lopes (1975). In addition, the size of the distal part of the vesica is higher than the base (the part colored in dark gray in Fig. 10) in examined specimens, while in the terminalia illustrated by Lopes (1975) the distal part of vesical is shorter than the base. We analyzed photographs of the terminalia of the male holotype and it is similar to that of examined specimens. This species has only been recorded for the states of Bahia, Espirito Santo and Rio Janeiro (Lopes, 1975b; Lopes and Tibana, 1987). Thus this is a new record for the Brazilian Amazon.

Biology. One specimen was collected in an urban forest in a trap baited with rotted beef lung, and another on flower buds of Cassia sp. (Fabaceae).

Distribution. NEOTROPICAL – Brazil (Bahia, Espirito Santo, Pará, Rio de Janeiro).

Oxsarcedoxia nitida Soares & Mello-Pattiu, 2010

Material examined. BRAZIL: Amazonas: Coari, Base Petrolifera Geólogo Pedro de Moura, 19–23.VII.2009, F.S. Carvalho-Filho [collector] [1 male, MPEG].

Comments. This species has only been recorded from the type locality, Avispas in Peru (Soares and Mello-Pattiu, 2010). Therefore, this is a new record for Brazil.

Distribution. Brazil (Amazonas), Peru (Avispas).

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

We thank the Fundação de Amparo à Pesquisa do Estado do Maranhão (FAPEMA) (Maranhão State Research Foundation) for financial support and for doctoral fellowship granted to the second author. We are grateful to Dr William L. Overal (MPEG) and Dr Thomas Pape (Natural History Museum of Denmark, Copenhagen) for reviewing the English and for suggestions. We also thank Dr. Cátia Mello-Pattiu (Museu Nacional do Rio de Janeiro) for sending photographs of the type material of Oxsarcedoxia aduncia. Important corrections and helpful comments were made by two anonymous reviewers.

References

