Systematics, Morphology and Biogeography

Description of immature stages of \textit{Hoplia mexicana} Harold and \textit{H. squamifera} Burmeister (Coleoptera, Melolonthidae, Hopliinae)

Miguel Ángel Moróna,*, Andrés Ramírez-Ponceb, Concepción Ramírez-Salinasc, Hortensia Carrillo-Ruizd

a Red de Biodiversidad y Sistémática, Instituto de Ecología, Xalapa, México
b Laboratorio de Biología Evolutiva, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
c El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de Las Casas, Chiapas, Mexico
d Laboratorio de Entomología, Escuela de Biología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

\textbf{Abstract}

Third stage larvae and pupae are described based on specimens collected in Mexico: Oaxaca (Cerro Zempoaltepec	extsuperscript{b}, and Chiapas (Amatancango), respectively. Pupal characters are described for the first time for American Hopliinae. Habitus images and figures of diagnostic characters as well as comments on the differences between these larvae and those of \textit{Hoplia calliphyge} LeConte, 1856 and \textit{H. equina} LeConte, 1880, the only Hopliinae larvae previously known in New World, are also included.

© 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\section*{Introduction}

The immature stages of world Hopliinae are poorly known. Partial descriptions exist for the third instar larvae of the North American species \textit{Hoplia calliphyge} LeConte, 1856 (= \textit{H. oregonae} LeConte, 1856; = \textit{H. caizeri} Boyer, 1940) and \textit{H. equina} LeConte (Ritcher, 1949). Additionally, there are larval descriptions for some Russian species of the genus \textit{Hoplia} Illiger, 1803 and the central European \textit{H. philanthus} (Fuessly, 1775) (Medvedev, 1952; Hürka and Bilý, 1966). Micó (2001) redescribed the larva of \textit{H. philanthus} and described that of \textit{H. chloropha}na Erichson, 1848, based on specimens from Spain, both with detailed illustrations. Ansari \textit{et al.} (2006, 2008) detailed the life cycle of \textit{H. philanthus} and commented about the importance and biological regulation of this turf pest.

Larvae of North American species of \textit{Hoplia} may be characterized as follows: head without stemmata; labrum symmetrical; maxillary stridulatory area with row of 9–11 short teeth with anteriorly directed points; lacina with longitudinal row of 3 unci, distal 2 unci fused basally, subapical uncus much smaller; epipharynx with plegmatia, plegmata quite short; proplegmatia present or absent; epizygum absent; haptomerum with single helus; dexiophoba and laeophoba absent; haptolachus without microsensilla; spiracles of abdominal segments 1–3 similar in size, spiracles of segments 4–8 much smaller; anal opening Y-shaped; raster consisting of subtriangular teges of 30–60 fairly long hamate setae with curved tips; claws of fore legs large and falcate, claws of middle legs much reduced in size, claws of hind legs minute or absent (Ritcher, 1966). Larvae of European species of \textit{Hoplia} share all of the above cited characters, except: maxillary stridulatory area with row of 12–14 short teeth with anteriorly directed points; lacina with subapical uncus large; epipharynx without proplegmatia; spiracles of abdominal segments 4–6 diminutive (Micó, 2001).

During recent years, we had the opportunity to rear many scarab larvae collected from forest soil, grasslands and corn fields of southeastern Mexico, and some of them belong to species of \textit{Hoplia}. This material allowed us to describe in the present paper the third instar larvae for \textit{H. mexicana} Harold, 1869 and \textit{H. squamifera} Burmeister, 1844, for which the immature stages were unknown. We also describe the pupae of these two species, a life stage that was unknown for any New World hopliine scarab.

\section*{Material and methods}

Throughout the descriptions and discussions, we follow terminology employed by Ritcher (1966) and Morón (1986). Drawings of diagnostic structures were made using a Leica stereomicroscope.
associated with a camera lucida at 0.8–5.0× magnification. Measurements were taken using an ocular micrometer (Leica Microsystems, Germany). Voucher specimens were deposited at Colección proyecta Diversidad en Sistemas de Cultivos, El Colegio de la Frontera Sur (ECOSUR), and Colección Entomológica, Instituto de Ecología, A. C. Xalapa, México (IEXA).

Taxonomy

Descriptions

Hoplia mexicana Harold, 1869

Third instar (*Figs. 1–11 and 13*). Description. Head (*Fig. 2*). Maximum width of head capsule: 1.8–2.0 mm. Surface of cranium smooth, with scattered minute punctures, pale yellowish. Frontal and epicranial sutures hidden. Frons with 2 exterior frontal setae, 3–4 posterior frontal setae, 1 anterior frontal seta, 1 anterior angle seta, 3 dorsoepicranial setae, 8–9 epicranial setae on each side and 7–9 setae behind each antennal support. Clypeus with 2 central setae and 4 lateral seta on each side. Labrum nearly symmetrical with rounded lateral margins irregularly bordered, anterior margin projected forward with irregular border, 6–7 posterior setae, 1 central seta and 3–4 lateral setae on each side. Stemmata absent. Epipharynx (*Fig. 5*) 1.0–1.1 mm wide, 0.8–0.9 mm long, epizygum absent and zygum as a irregular, ovate, reddish yellow plate. Haptomerum weakly raised, with 4 heli; each plegmatia formed by 8–10 short plegmata; proplegmatia absent. Each acanthoparia with 10–12 spinose setae. Dexiophoba and laeophoba absent. Dexiotorma narrowed, slightly sinuose. Laeotorma elongate and narrowed, with sclerotized plate uniformal, raised. Sense cone short. Crepis weakly defined. Left chaetoparia with 28–30 spinose and medium size setae mixed. Right chaetoparia with 30–36 short, stout setae. Mandibles (*Figs. 3 and 4*) without ventral stridulatory area; scissorial area in both mandibles without distal blade. Right mandible with 1 small preapical tooth, inner margin simply curved, and distal lobe (M1) of molar area scarcely developed. Calx short. Left mandible with 1 small preapical tooth, inner margin simply curved, brustia moderately setose. Acia absent. Maxillae (*Figs. 6–9*). Mala with 1 uncus on apex of galea, 3 uncis surrounded by 3–4 stout heli on apex of lacinia; stridulatory area with 8 small teeth with anteriorly directed points. Hypopharyngeal sclerome (*Fig. 10*) asymmetrical with raised and curved projection on the right side. Fourth antennomere elongate, with distal half narrowed, with 1 ovate, dorsal sensory spot on basal half and 2 ventral sensory spots.

Thorax. Respiratory plates light yellow, scarcely curved, “C” shaped (*Figs. 1 and 13*) 0.12–0.14 mm long, 0.10–0.11 mm wide, bulla small, slightly raised, rounded, distance between lobes longer than dorso-ventral diameter of bulla; microscopic holes of respiratory plate elongate-oval in outline and arranged in irregular transverse rows. Lateral sclerome of pronotum not defined. Proproscutum with 20–22 long setae regularly distributed; proscutum with 8–9 slender long setae; mesopproscutum with transverse row of 10–12 long setae; mesoscutum with 12–16 setae; mesoscutellum with row of 8–10 slender long setae; metapproscutum with transverse row of 12–16 mixed short and long setae; metascutum with 10–12 setae; metascutellum with transverse row of 10–12 mixed short and long setae (*Figs. 1 and 13*). Protarsal claws long, narrowed, sharply pointed, with 1 prebasal inner seta and 1 lateral external seta, moderately longer than mesotarsal claws; mesotarsal claws long, sharply pointed, with pre-basal and lateral setae; metatarsal claw short, rounded, with 2 setae, much shorter than mesotarsal claws. Apical metatarsomere shortened, rounded, with ventral side clearly convex.

Abdomen. Respiratory plates light yellow, slightly curved, “C” shaped; on segments I–IV with similar diameter, 0.12–0.13 mm long, 0.10 mm wide; plates on segments V–VII are slightly smaller, 0.10–0.11 mm length, 0.09 mm width. Plate on segment VIII is smaller than preceding. Dorsa of abdominal segments I–VI each with dense vestiture of yellow stout, short setae; dorsa of segments VII–IX with transverse rows of 20–28 slender, short setae. Venter of abdominal segments I–VIII with transverse rows of 14–18 slender, long setae; venter of segment IX with transverse rows of 12–16 mixed short and long setae.

Figs. 1–5. Third instar larva of *Hoplia mexicana*. 1, lateral habitus. 2, frontal view. Mandibles, ventral view: 3, left. 4, right. 5, epipharynx.
Raster (Fig. 11) with each palidia formed by 9–11 pali, convergent toward basal and distal extremes, septula wide, oval; tegilla with 20–26 short, stout setae; campus with 14–18 slender, short setae; barbula much more densely setose. Dorsal anal lip with dense vestiture of short setae. Ventral anal lip with scattered short setae toward sides and distal border narrowly notched at middle. Anal slit “Y” shaped. Approximate dorsal body length 16–17 mm.

Description: body length 7.5–7.8 mm. Widest width 4.4–4.5 mm. Head. Surface glabrous, strongly deflexed; frons convex with two rounded prominences; clypeus widely concave on the center; labrum, mandibles, maxillae and palps discernible; antennal theca briefly expanded, stout with apex rounded; eyes small (Fig. 14). Thorax: surface glabrous. Pronotum convex, surface slightly irregular, anterior angles prominent, posterior angles rounded. Meso- and metanotum well-differentiated. Elytral and posterior wing thecae closely appressed, curved ventrally around the body; elytral thecae with irregular depressions and large, prominent, humeral tubercles (Figs. 12 and 15); thecae of the wings slightly longer than elytral thecae. Protibiae with apical and preapical tubercles clearly developed. Meso and metatibiae with apical tubercle. Abdomen: segments I–VI clearly wider and shorter than the distal segments VII–VIII, without dioneiform organs, but segments II–IV with pairs of prominent tubercles and segment V with increased posterior border (Figs. 12 and 15–16). Pleural lobes rounded. Spiracle I elongate, with fine peritreme and covered by wing theca; spiracles II–IV ovate and high, prominent, with narrow sclerotized peritreme; spiracles V–VIII closed. Sutures between segments VIII and X not complete, partially fused. Last segment slightly pruinose, without urogomphi.

Figs. 6–12. Hoplia mexicana. 6–11: third instar larva. Maxillae: dorsal view: 6, left. 7, right. Mesial view: 8, left. 9, right. 10, labium and hypopharynx. 11, raster. 12, MALE pupa, lateral view.

Last abdominal segment of male with large dorsal and lateral rounded prominences, and genital ampulla ventrally exposed (Figs. 12 and 14–16); female without such prominences at the apex of abdomen.

Specimens examined. Four third instar larvae, four pupae and two exuviae of third instar larvae reared to adults, collected at Mexico: Oaxaca: Santa María Tlahuitoltepec municipality, Cerro Zempoaltepetl, 2400 m, 8-VI–2010, A. Ramírez col. (IEXA).

Comments. The third instar larvae of H. mexicana resemble those of H. callipyge and H. equina, but H. mexicana has 4 heli on haptomerum, and palidia with well-defined setula. Hoplia callipyge and H. equina each have 1 helus on the haptomerum and only sub-triangular teges of long hamate setae with curved tips. The dense setiferous vestiture on the dorsum of abdominal segments I–VI and the sides of the last segment, aid in distinguishing H. mexicana from the known larvae of other Mexican melolonthine scarabs. Projections on the humeral area of the elytra and the middle of the abdominal segments of the pupae of both sexes may act as auxiliary supports during pupal development. These projections possibly aid in regulating humidity near the body wall. This type of structure is also observed in pupae of some Scarabaeinae (Edmonds and Halffter, 1978), and Ceratocanthinae (Morón and Arce, 2003).

Biology. Hoplia mexicana is known only from the northern mountains of the Mexican state of Oaxaca, at localities with elevations between 2300 and 2500 m. Larvae have been collected in rich organic soil of oak and coniferous forest. Adults are rarely attracted to electric lights during summer, and their host plants are unknown.

Hoplia squamifera Burmeister, 1844

Third instar (Figs. 17–24). Description. Head (Fig. 18). Maximum width of head capsule: 2.1–2.4 mm. Surface of cranium smooth, with scattered minute punctures, pale yellowish. Frontal and epicranial sutures hidden. Frons with 2 exterior frontal setae, 1 posterior frontal seta, anterior frontal seta absent, 1 anterior angle seta, 3–4 dorsoepicranial, 14–18 epicranial setae on each side and 6–8 setae behind each antennal support. Clypeus with 2 central setae and 4 lateral setae on each side. Labrum nearly symmetrical with rounded lateral margins irregularly bordered, anterior margin projected forward with irregular border, basal transverse keel with 5 posterior setae, 1 anterior-central seta and 5–6 lateral setae on each side. Stemmata absent. Epipharynx (Fig. 21) 1.6–1.9 mm wide, 1.0–0.2 mm long. Epizygum absent and zygum as irregular, ovate, reddish yellow plate. Haptomerum weakly raised, with 4 heli; each plegmatia formed by 9–10 short plegmata; proplegmatia absent. Each acanthoparia with 9–10 spine setae. Dexiophoba and laeophoba absent. Dexiotorma narrowed, slightly curved. Laeotorma elongate and narrowed with sclerotized plate unciniform, raised. Sense cone short. Crepis weakly defined. Left chaetoparia with 30–34 spine and medium size setae mixed. Right chaetoparia with 28–30 short, stout setae. Mandibles (Figs. 19 and 20) without ventral stridulatory area; scissorial area in both mandibles without distal blade. Right mandible with 1 small rounded, preapical tooth, inner margin simply curved, and distal lobe (M1) of molar area scarcely developed. Calx short. Left mandible without preapical tooth, inner margin simply curved, brustia moderately setose. Acia absent. Maxillae (Fig. 23). Mala with 1 uncus on apex of galea, 3 unci surrounded by 3–4 stout heli on apex of lacinia; stridulatory area with 10–11 small teeth with anteriorly directed points. Hypopharyngeal sclerome (Fig. 22) asymmetrical with curved projection on the right side. Fourth antennomere elongate, with distal half narrowed, with 1 ovate, dorsal sensory spot on basal half and 2 ventral sensory spots.

Thorax. Respiratory plates light yellow, scarcely curved, “C” shaped (Fig. 17) 0.11–0.15 mm long, 0.10–0.12 mm wide, bulla small, slightly raised, rounded, distance between lobes longer than dorso-ventral diameter of bulla; microscopic holes of respiratory plate elongate-oval in outline and arranged in irregular transverse rows. Lateral sclerome of pronotum not defined. Proposcutum with 14–18 long setae regularly distributed; proscutum with 5–6
slender long setae; mesoprescutum with transverse row of 8–9 long setae; mesoscutum with 10–12 setae; mesoscutellum with row of 6–8 slender long setae; metaprescutum with transverse row of 9–12 mixed short and long setae; metascutum with 8–10 setae; metascutellum with transverse row of 6–8 mixed short and long setae (Fig. 17). Protarsal claws long, narrowed, sharply pointed, with 1 pre-basal inner seta and 1 lateral external seta, moderately longer than mesotarsal claws; mesotarsal claws long, sharply pointed, with pre-basal and lateral setae; metatarsal claw short, rounded, with 2 setae, much shorter than mesotarsal claws. Apical metatarsomere shortened, rounded, with ventral side clearly convex.

Abdomen. Respiratory plates light yellow, slightly curved. “C” shaped; on segments I–IV with similar diameter, 0.13–0.14 mm long, 0.11 mm wide; plates on segments V–VII slightly smaller, 0.11–0.12 mm long, 0.10 mm wide. Respiratory plate on segment VIII smaller than plate on preceding segment. Dorsa of abdominal segments I–VI each with dense vestiture of yellow stout, short setae; dorsa of segments VII–IX with transverse rows of 18–20 slender, short setae. Venter of abdominal segments I–VIII with transverse rows of 10–12 slender, long setae; venter of segment IX with transverse rows of 10–12 mixed short and long setae. Raster (Fig. 24) with each palidia formed by 10–12 pali, convergent toward basal and distal extremes, septula wide, oval; tegilla with 24–30 short, stout setae; campus with 14–16 slender, short setae; barbula densely setose. Dorsal anal lip with dense vestiture of short setae.

Ventral anal lip with scattered short setae at sides and distal border narrowly notched at middle. Anal slit “Y” shaped. Approximate dorsal body length 16–18 mm.

Pupa (Figs. 25 and 26). Description: body length 7.8–8.1 mm. Widest width 4.5–4.6 mm. Head. Surface glabrous, strongly deflexed; frons convex with two rounded prominences; clypeus widely concave on the center; labrum, mandibles, maxillae and palps discernible; antennal theca briefly expanded, stout with apex rounded; eyes small (Fig. 25). Thorax: surface glabrous. Pronotum convex, surface slightly irregular, anterior angles briefly prominent, posterior angles widely rounded. Meso- and metanotum well-differentiated. Elytral and posterior wing thecae closely appressed, curved ventrally around body; elytral thecae with irregular
longitudinal striae and large, prominent, semiconical humeral tubercles (Figs. 25 and 26); thecae of the wings slightly longer than elytral thecae. Protribia with apical and preapical tubercles clearly developed. Meso and metatibiae with apical tubercle. Abdomen: segments I–VI clearly wider and shorter than the distal segments VII–VIII, without dioneiform organs, but segments II–IV with pairs of prominent tubercles and segment V with thicker posterior border (Figs. 25 and 26). Pleural lobes rounded. Spiracle I elongate, with fine peritrema partially covered by wing thecae; spiracles II–IV ovate and high, prominent, with narrow sclerotized peritrema; spiracles V–VIII closed. Sutures between segments VIII and X incomplete, partially fused. Last segment slightly pruinose, without urogomphi. Last abdominal segment of male with dorsal and lateral rounded prominences, and genital ampulla ventrally exposed (Fig. 26); female without such abdominal prominences (Fig. 25).

Comments. The larvae of *Hoplia squamifera* resemble those of *H. mexicana*, but lack antero-frontal setae, have 9–10 wide plegmata on each plegmatia, and have wide setula, whereas *Hoplia mexicana* have 2 antero-frontal setae, 7–8 narrow plegmata on each plegmatia and narrower setula.

Pupae of both *Hoplia mexicana*, and *H. squamifera* lack urogomphi and dioneiform organs. This fact is very interesting because, as far as we know, no other scarab group possesses such a combination of characters. For instance, with the exception of *Manopus biguttatus* Laporte, 1840 (Neita-Moreno et al., 2012), known pupae of Melolonthinae have urogomphi and lack dioneiform organs (Table 1). On the other hand, known pupae of Rutelinae and Dynastinae, lack urogomphi but, in contrast, have dioneiform organs (Morón, 1993). With the combination of these characters, and the unique paired supporting organs in the humeri and tergites, the pupae of Hopliinae are very distinct from other subfamilies of Melolonthidae. Description of the pupae of many other genera of Melolonthidae surely will offer more characters to be tested in future phylogenetic analyses of Scarabaeoidea.

Table 1

<table>
<thead>
<tr>
<th>Subfamilies</th>
<th>Genera</th>
<th>P.P.</th>
<th>H.P.</th>
<th>H.D.</th>
<th>T.P.</th>
<th>U</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melolonthinae</td>
<td>Phyllophaga Harris, 1827</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Morón (1986)</td>
</tr>
<tr>
<td></td>
<td>Polyphylla Harris, 1841</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Morón and Nogueira (2015)</td>
</tr>
<tr>
<td></td>
<td>Clavipalpus Laporte, Castelnau, 1832</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Neita-Moreno et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Demodema Blanchard, 1850</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Morón and Salvadori (2006)</td>
</tr>
<tr>
<td></td>
<td>Isonychus Mannerheim, 1829</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Neita-Moreno et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Macroaclytus Dejean, 1821</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Ramírez-Salinas et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Manopus Laporte Castelnau, 1840</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Neita-Moreno et al. (2012)</td>
</tr>
<tr>
<td>Hopliinae</td>
<td>Hoplia Illiger, 1803</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Present publication</td>
<td></td>
</tr>
<tr>
<td>Rutelinae</td>
<td>Anomala Samouelle, 1819</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morán and Pauar-Cabrera (2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macraspis MacLeay, 1819</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón and Morón (2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chirrota Burmeister, 1844</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Pardo-Locarno and Morón (2007)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chrysophora LeP. & Serville, 1828</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Morón (1995b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leucothyereus MacLeay, 1819</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Neita-Moreno et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>Dynastinae</td>
<td>Ligrus Burmeister, 1847</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón (1983)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anconogatha Ericson, 1847</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Morón (1995a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coelosis Hope, 1837</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón and Arec (2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Golofa Hope, 1837</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón (1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynastes Kirby, 1825</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón (1993)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aegopsis Burmeister, 1847</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón (2003)</td>
<td></td>
</tr>
<tr>
<td>Cetoniinae</td>
<td>Euphoria Burmeister, 1842</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Morón (1995a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoplophorus J. Thomson, 1880</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Morón (1995a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gymnetus MacLeay, 1819</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Neita-Moreno et al. (2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neocelis Schoch, 1897</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Neita-Morón (2003)</td>
<td></td>
</tr>
<tr>
<td>Trichinae</td>
<td>Inca LePeletier & Serville, 1828</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Morón (1993)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Archединus Morόn & Kikken, 1990 Krikken, 1990</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Morón (1993a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orphinae</td>
<td>Aegilius Woodfood, 1846</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón (1995a)</td>
</tr>
<tr>
<td></td>
<td>Ceratocanthinae</td>
<td>Ceratocanthis White, 1842</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Morón and Arec (2003)</td>
</tr>
<tr>
<td></td>
<td>Aphodinae</td>
<td>Termitodius Wasmann, 1894</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Reyes-Castillo and Martínez (1979)</td>
</tr>
<tr>
<td></td>
<td>Scarabaeinae</td>
<td>Phanaeus MacLeay, 1819</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Edmonds (1967)</td>
</tr>
<tr>
<td></td>
<td>Eurythermus Dalman, 1824</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Neita-Morón (1994)</td>
<td></td>
</tr>
</tbody>
</table>

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

The aid of Adriana E. Castro (ECOSUR) and Susana Guzmán (Instituto de Biología, UNAM, Mexico, D.F.) during field and technical work is here recognized. The suggestions of two anonymous reviewers were very useful in improving the final version of the manuscript. We thank Bruce Gill (Ottawa, Canada) for his friendly assistance with the English language. This paper was supported in part by the research line “Coleópteros Lamelicornios de América Latina” Instituto de Ecología, A.C. Xalapa, Mexico (# 2004010011).
References

